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Distributed signal detection systems have been shown to be quite effective due to their
advantages that include higher reliability and survivability, enhanced system performance and
shorter processing time. These systems consist of multiple remotely located sensors that observe
a common phenomenon. Some data processing is carried out at these peripheral detectors and
processed information is sent to a central detector for fusion. When observations at peripheral
detectors ‘are continuous-time, they need to be sampled. One important issue is the design of
sampling schemes at the peripheral sensors. An option is to employ uniform sampling but it is
not necessarily optimum. Also, sampling schemes designed to ensure signal reconstruction with
minimal loss due to sampling may not be the best when used in signal detection systems. We
considered the problem of sampling design for Gaussian signal detection problems. Due to the
analytical intractability of the probability of error criteriun, our approach was based on the class
of Ali-Silvey distance measures. Sampling points were determined that maximized the Ali-Silvey
distance measure between the class conditional densities. Specifically, the Bhattacharyya
distance, the I-divergence, the J-divergence and the Chernoff distance were used. The known
signal case and the random signal case under strong signal assumptions were considered. This
methodology was extended for the weak signal case. A summary of these results is included in
Appendix A. In the context of distributed signal detection both sampling and quantization are
carried out at the peripheral detectors. Their joint design when there is a constraint on the
communication bandwidth of the outgoing link was investigated. These results are available in
the Ph.D. dissertation by C.T. Yu. The issue of constrained communication bandwidth in
distributed detection is further considered by proposing a different paradigm for distributed
detection. This approach combines the features of both centralized and hard decision
decentralized detection problems. An extended abstract that outlines the results is provided in
Appendix B. Publications stemming from AFOSR sponsorship during this research period are

given next.
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APPENDIX A




Summary

Recently, sampling design for detection problems has been considered in {1, 2, 3]. In[1],
random and deterministic sampling schemes for the detection of known signals in Gaussian
noise were considered. Use of the decision statistic based on sampled data in the receiver,
instead of the continuous-time detector (matched filter/correlation receiver), naturally re-
sults in a degradation of performance. Deterministic and random sampling schemes were
designed so ‘as t6 minimize the degradation in the performance of the detector. The perfor-
mance measure for the detectors was based on the so called generalized signal-to-noise ratio.
In[2], an asymptotically optimal periodic sampling design for the Gaussian hypothesis test-
ing problem was presented. Under very.general conditions, the probabilities of error (Type
I and Type II errors) decrease exponentially with increasing sample size. For this problem,
an asymptotically optimal periodic sampling scheme was designed by maximizing the rate
of exponential decrease. In[3], the sampling scheme for Gaussian hypothesis testing problem
was obtained so as to maximize the Ali-Silvey distances between the class conditional den-
sities. All of the above sampling procedures[1, 2, 3] are applicable to the strong signal case.
They do not treat the weak signal detection problem. In this paper, we consider sampling
design for the Gaussian detection problem in the weak signal case.

In many practical situations, we are interested in the weak signal detection problem
which can be formulated as a hypothesis testing problem for testing hypothesis Hp versus
an alternative hypothesis H;

Hy : r(t) = 0s(t) + n(t) alt<b

Hy : r(t) = n(t) a<t<b
where r(t) is the observation over the interval [a,d], n(t) is a Gaussian random process
with zero mean and covariance function R,(t,7), and s;(t),i = 0,1, is the signal. The
signal could be a deterministic signal or a Gaussian random process with mean m,,(t) and

covariance function R,,(t,7), i=0, 1. s(t) is assumed to be independent of the noise, n(t).




0 is a parameter with small positive real value so that §s(t) represents the weak signal as
0 approaches zero. Without loss of generality, the average power of s(t) and that of n(t)
are normalized to unity so that § can be used to control the signal to noise ratio. This is a
well-known model for the weak signal detection problem which has been studied extensively
in the literature. For example, Middleton[4] derived the locally optimum detector (LOD)
by expanding the likelihood ratio test in terms of a power series and truncating to a first
order approximation. In the limit as the signal tended to zero, the canonical structure of
the LOD was established for the weak signal detection problem. Kassam [5] analyzed the
performance of the LOD when the sample size approaches infinity. Here we consider the
design of sampling schemes for weak signal detection.

Let r, n and 0s represent the sampled observation, noise and signal data vectors respec-
tively. Also, let p(r|H1), p(r|Ho), and fn(n) denote the joint probability density functions
(PDFs) of r under Hy, of r under Hy and of noise respectively. The class of Ali-Silvey dis-
tance measures[6, 7] between the conditional densities, p(r|H;) and p(r|Hp), is defined by the
general expression, D(p(r|H;),p(r|Ho)) = f(Eo[C(L)]), where f is an increasing function;
E, denotes expectation with respect to po; C is a convex function; L is the likelihood ratio
defined as %.We note that the likelihood ratio approaches unity as signal becomes very

weak (i.e., as 0 approaches zero). This is due to the fact that
p(r|H,) = p(r|Hp) = fn(n) as 9 —0.

Also, the Ali-Silvey distance measure between the conditional densities, p(r|H;) and p(r|Ho),

goes to 0 as @ goes to 0, i.e.,
lim D(p(c|Hy), p(x{ o)) = lim f(Eo[C(L)]) = 0.

Therefore, in this weak signal case, the sampling design criteria developed in(3], i.e., the
Ali-Silvey distance measures between p(r|H;) and p(r|Ho), degenerate. To overcome this

difficulty, a series expansion approach will be employed. The MacLaurin series expansion




of the Ali-Silvey distance measure, D(p(r|H1), p(r|Hy)), about the parameter 6=0 can be

written as
= 1 &D(p(r|H,), p(r|H ,.
D(p(el ), p(e{Ho)) = Y (T, peF))) ) g
i=0 ¢
Because of the fact aOD(’(rlg%‘ 2(rlHo))\, o = D(p(r|Hy), p(r|Ho))ls=o = 0, the series expansion

of D(p(r|H:), p(r|Ho)) becomes

D(p(e{ ), p(eite)) = 3o(5ZREEE, pelH), ) g

l—l

As discussed above, in the limit as the signal strength tends to zero (i.e., § — 0), the distance
measure between p(r|H;) and p(r|Hy) becomes approximately equal to 0. Therefore, inétead
of maximizing the distance measures D(p(r|H;), p(r|Hp)), we can maximize the first nonzero
coefficient of.the series expansion of D(p(r|H,), p(r|Ho)) to design the sampling schemes.
This is because the first non-zero term is the dominant term in the series expansion of the
distance measures due to the fact that § << 1. Hence, the first nonzero coefficient of the
MacLaurin series expansion of D(p(r|H),p(r|Ho)) will be derived. In order to determine
this quantity, we consider the following two cases separately: one is when the signal is
deterministic and the other is when the signal is a Gaussian random process.
A. The Deterministic Signal Case

In this case, the signal is deterministic, and the noise is a Gaussian random process with
zero mean and a known autocorrelation function, R.(t,7), where R,(t,t) is set to unity
without loss of generality. The joint PDFs of the sampled data, r7 = [r(¢;) r(2)---r(¢tn))],
under hypotheses Hy and H, are N-dimensional Gaussian density functions with mean vector

and covariance matrix, (0, Ky) and ( 0s,Ky), respectively, i.e.,

1
(rlHo) (2 )N/glK |1/2 exp(

rKn 'r)

1

p(rIHl) = (27")N/2|Kn|1/2

. exp(—%(r - 8s)TKy~}(r — 6s)).




It can be shown[8] that the first non-zero coefficient of the series expansion of D(p(r|H, ), p(r|Ho))
is

a’D

Farle=0=0Cr- EO[( 50 |0—0) ] (1)
where D denotes D(p(r|H,), p(r|Hp)), C1 is a constant that depends on the functions f and
C used to define the specific distance measure in the class of Ali-Silvey distance measure. For
example, C;=1, 2, a.nd for I-divergence, J-divergence and Bhattacharyya distance defined

in[7, 9]respectively. For this Gaussian noise case, it has been shown[8] that
32D

Since the constant C, is independent of the sampling points, t; to ¢y, we conclude that
the sampling points are obtained so as to maximize sTKyp™'s for the weak signal detection
problem in the known signal case. Sampling points are independent of the choice of distance
measures in the class of Ali-Silvey distance measures. It is interesting to note that this
quantity is identical to that obtained in[3] for the strong signal case when the constant is
ignored. This is not surprising in view of the fact that the statistic of the likelihood ratio

test for the known signal Gaussian problem(10] is
LR(r) =sTKp 'r
and the locally optimum detector (LOD) statistic[5] is
L?,p = LOD(r) =s"Ky'r. ‘ (2)

Hence, for the known signal Gaussian detection problem, the sampling design criterion based
on the distance measures for the weak and strong signal cases are identical.

Let the objective function in Equation (1) be written as

Dyv =Cs - EO[(%IO—O) ] = Ci - Eol(L2op)*] = f(EolC(LLop))) 3)




where the functions are defined as f(z) = C; -z, C(z) = z?, andL],p is the LOD statistic in
the deterministic signal case shown in Equation(2). Since f is an increasing function, and C
is a convex function, interestingly enough, Dyy represents a new distance measure belongs
to in the class of Ali-Silvey distance measures.
B. The Random Signal Case

In this case, s(t) and n(t) defined earlier are Gaussian random processes with mean
and covariance functions, (sm(t), R(t,7)) and (0, R.(t,7)), respectively, where R,(t,t)
and R,(t,t) are set to 1. Then, the joint PDF of the N samples of observation, rf =
[r(t1) r(t2)---r(tn)), under hypothesis Hy is a N-dimensional Gaussian density function
with zero mean and covariance matrix, Kn. Let the PDF of N samples of s(t), s =
[s(t1) s(t2)-- - s(tn)), be denoted as fs(s) with a N-variate normal density function, N'(sm, Ks).
The noise is assumed to be independent of the signal. Thus, the PDF of r under hypothesis

H; can be written as

p(r|H) = -/;fN(r — 0s) - fs(s)ds = E,[fn(r — 0s)] 4)

where fy(n) = fn(r|Ho) = p(r|Ho), and E, denotes expectation with respect to fs(s).
When the mean vector, sy, is non-zero, the first nonzero coefficient of the series expansion
of D(p(r|H), p(r|Ho))[8] is

a*D

Sazle=0 = C1- EO[( |a 0)’]

= Cl . SmTKn Sm-

Hence, in this situation, all the results are essentially the same as in the deterministic signal
case when s is replaced by sm. Therefore, we consider the more interesting case when
$m = 0. Due to the fact that sy, = 0, the first nonzero coefficient of the series expansion of
D(p(r|H,), p(r|Ho))[8] becomes

d‘D

590 o le=0=Ca- Eo[( 502 |a_ )?] (5)




where C; is a constant which is related to the choice of the functions, f and C as indicated
earlier. Note that the results obtained so far are valid for the signal vector s with any
arbitrary N-variate density function. We now let s(t) to be a zero-mean Gaussian random
process. Then the sampled data vector, s, has an N-dimensional joint Gaussian density

function denoted as N (0,Kj). In this situation, Equation (5) can be evaluated to yield[8]

%%?‘h:o = 2C; - tr[(KsKn™!)?] (6)

The result obtained in Equation (6) depends on the covariance matrices, K4 and Ky,
which come from the covariance functions, R,(t,7) and R,(t,7), through the sampling points,
ty,13,+-+,tn. Therefore, the first non-zero coefficient of the series expansion of D depends
only on the sampling points and the covariance functions. As before, we rewrite Equation

(5) as
2L
00?

where again f(z) = C; - z, C(z) = 22, and L¥,, is the LOD statistic in the random signal

Dyv = C3 - Eo[(57 l0=0)*] = C2 - Eo[(LEop)*] = f(Eo[C(LEoD))) (7

with zero mean case. In this case, again the first non-zero coefficient of the series expansion
of D yields a new distance measure denoted as Dyy that belongs to the class of Ali-Silvey
distance measures.

Thus, a new distance measure for the weak signal Gaussian detection problem is devel-
oped in this paper. This distance measure is obtained by expanding the Ali-Silvey distance
between the class conditional densities in a power series and then considering the first non-
zero coefficient. Sampling points that maximize the new distance measure are obtained by
employing the iterative algorithm suggested in[3]. A numerical example is presented for
illustration. In the example, we compare the detection performance of our sampling design
based on the new distance measure and that of the uniform sampling scheme. We demon-_
strate that the sampling design based on the new distance measure outperforms the uniform

sampling scheme.
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| Extended Abstract

Recently, the design and analysis of distributed sensor networks for signal detection and es-
timation (decentralized detection/estimation systems) have attracted substantial interest in
the literature. This is because decentralized systems generally have the advantages of higher
reliability, survivability, and shorter decision time over centralized systems. A decentralized
detection sy;stem usually contains a number of remotely located local sensors that observe a
common phenomenon and a data fusion center(or global decision maker) that makes a. final
decision. The local sensors are linked to the data fusion center by transmission channels. If
there are no constraints on the transmission channels, all the raw data (or local likelihood
ratio) at local sensors can be transmittéd to the global decision maker for data processing.
In this case, signal processing becomes centralized in nature and conventional optimal pro
cedures can be implemented at the fusion center. In many practical situations, there are
limitations on the transmission channels. Also, local sensors are provided with processing
capabilities. In this case, local sensors pre-process their observations individually and convey
the compressed version of sensor data to the fusion center where the received information
is appropriately combined to make the final decision. Decentralized detection systems have
been designed using various approaches such as the Bayesian approach, the Neyman-Pearson
approach, the min-max criterion and the Ali-Silvey distance criterion, e.g., (1, 2, 3, 4]. Ten-
ney and Sandell[1] considered a distributed detection system with a fixed fusion rule. Chair
and Varshney(2] developed an optimal fusion rule with fixed local detectors. Hoballah and
Varshney([3] pf‘e’sénted a generalized Bayesian design approach for a decentralized detection
system.

In this paper, we present a novel paradigm for the decentralized detection problem under
communication constraints. The proposed approach is flexible and combines the features
of both centralized and hard decision decentralized detection problems. Under specified

constraints, we design the optimum decentralized detection scheme. The system can operate
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SendHO ! Send LLR - Send H,
"""" o t

Figure 1: Decision scheme at a local sensor

LLR

at the two extremes, i.e., it can be a centralized system or a hard decision decentralized
detection system, or anywhere in-between. In this scheme, local sensors send a binary
(hard) decision to the fusion center when the local sensors have a higher confidence in the
decision, otherwise a perfect version of the LLR (in practice, a finely quantized version of
the LLR) is sent. The degree of confidence at which this switch is made is determined by
the specified communication constraint. The fusion center makes a final decision based on
the received information from local sensors. A local sensor transmits the LLR to the fusion
center if the ‘LLR falls in the region, to < LLR < t;, otherwise it sends a binary decision
as shown in Figure 1. This scheme provides a tradeoff between the average communicat.iéﬁ
rate and the resulting system performance. One may determine the average communication
rate to attain the desired system performance or one may determine the achievable system
performance under a given constraint on the average communication rate.

Problem Formulation

The decentralized detection system to be considered is shown in Figure 2. Observation
samples at the local sensors are denoted by rj, ¢ = 1.---, M, and their joint conditional
densities are assumed known. There is no communication among local sensors. Based on
its own observation rj, each local sensor makes a local decision u; € {0, 1, 2},¢=1,---, M,
where u; = 0 and u; = 1 represent the fact that the i** local sensor decides hypotheses Ho
and H, and correspondingly sends a zero and a one to the fusion center. u; = 2 indicates that
the :** local sensor computes and sends its LLR L; to the fusion center. Let up, represent
the output of the sensor 1, i.e., ur, = u; when u;=0 or 1: up, = L; when u;=2. Local sensor
outputs are transmitted to the fusion center where a global decision is made based on the
received data vector, upT =[up, ug, -+ up,l.
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In this decentralized detection problem, the idea is to partition the LLR (observation
space) at each sensor into three disjoint regions 82((,‘), ZR&" and §R§“, t=1,---, M, and assign
the corresponding value to u;, i.e.,

Oa L.‘(I‘i) € §R((;),
u; =1 1, Li(r;) € §R§‘.)’ | |
2, Lir;) € ?Rg_,') = R6) — ggg') _ §R((;),

where r; is the sampled observation vector and L;(r;) is the local likelihood ratio (LLR) at the
itk sensor. When éRﬂ_,‘), i=1,---, M, are null sets, the local sensors make a hard decision only
and this kind of problem has been studied in [1, 3]. On the other hand, when %g) and R,
¢ =1,---,M, are null, the problem reduges to a centralized detection problem. In this case,
conventional detection procedures can be implemented. Thus, the decentralized detection
problem 1’1nder consideration here is an intermediate problem between the hard decision
decentralized detection problem and the conventional centralized detection problem. Tﬁe
probability that L(r;) is transmitted from the sensor 7 is employed as a measure of the

transmission rate on the channel ;. We define
R; = p(send L;) =1 — p(send Hoor Hy), 1 =1,---, M. (1)

Note that R;=1, ¢ = 1,---, M, represents the centralized case, and R;=0, 1 = 1,--- M,
represents the case that hard decisions are made at the local sensors. We are interested in
examining the flexible hybrid decision scheme in the decentralized detection system with a
lower average communication rate (as compared to the centralized detection problem) on
the channels linking local sensors to the fusion center.

System Design

In the Bayesian hypothesis testing problem, the optimal local decision rules and the
fusion rule are obtained so as to minimize the average cost. The Bayes risk function to be

minimized can be written in the form

N
—

1 1
Reis = Y Y Cijmip(Decide H; | H; is true), (

1=0 3=0 .

15




where C;; is the cost of deciding H; when Hj is true and «; is the a priori probability of H;,
i j=01 .

Design of a decehtra.lized detection system involves specifying both the local decision rules
and the global decision rule. By employing the person-by-person optimization methodology,
the system is designed so as to minimize the risk function. The system is specified by

e Optimal local decision rule at sensor k, k = 1,--- ,m:

p(ry|H1) (k)
0, ;(—,lm < i3,

= p(ri|H) (k)
Uk 1, ;(;tw—o; > 115, (3)

2, otherwise.

e Optimal fusion rule:

uo=1

p(up|d) > Cf (4)
p(uglHo) < Ci’

U.o=0

where u} is the one of the 3™ possible combinations of uf.

Motivated by the difficulty and excessive computational requirements of the above PBPO
system design, a simplified design procedure based on the class of Ali-Silvey distance mea-
sures is also presented. Following the lead of [4, 6, 7, 8], we can obtain local decision rules
that maximize the Ali-Silvey distances between the conditional densities at the input of the

fusion center

p(ur|H1)
P(UFIHO) )])’ (5)

D(p(ur|H1), p(ur|Ho)) = f(Eo[C(

where f is an increasing function; Ey denotes expectation with respect to po; and C is a
convex function.

It should be ﬁoted that both system designs are obtained under communication con-

straints given in Equation (1). An example is also presented to illustrate this flexible hybrid

decision scheme for the decentralized detection problem. Results show that the system per-

formance of the proposed scheme with lower average communication rate is fairly close to

the performance of the centralized system.

16




ry(t)

Sensor 1

Uy

Ry

UF]

Phenomenon

1,(t)

2 r3(t)
Sensor 2 Sensor 3
U u3

U2 Uf3
R, R,

Data Fusion Center

H,/Hy

Figure 2: Decentralized Detection System

17

(b

Sensor M

Upm

UFM




References--

[1]

[2]

8]

[5]

(6]

8]

R.R. Tenney and N.R. Sandell, “Detection with Distributed Sensors,” [EEE Trans.
Aerospace and Electronic Systems, Vol. AES-17, pp. 501-510, July 1981.

7. Chair and P.K. Varshney, “Optimal Data Fusion in Multiple Sensor Detection Sys-
tems,” IEEE Trans. Aerospace and Electronic Systems, Vol. AES-22, pp. 98-101, Jan.

1986.

I. Hoballah and P.K. Varshney, “Decentralized Bayesian Signal Detection,” [ELE Trans.
Information Theory, Vol. IT-35, pp. 995-1000, Sep. 1989. |

C.C. Lee and J.J. Chao, “Optimal Local Decision Space Partitioning for Distributed
Detection,” IEEE Trans. Aerospace and Electronic Systems, Vol. AES-25, pp. 536-544,

July 1989.

R. Srinivasan, “Distributed Radar Detection Theory,” IFE Proceedings, Vol. 133-F, pp.

55-60, Feb. 1986.

H.V. Poor and J.B. Thomas, “Applications of Ali-Silvey Distance Measures in the Design
of Generalized Quantizers for Binary Decision systems,” IEEE Trans. Commun., Vol.

COM-25, No. 9, pp. 893-900, Sep. 1977.

H.V. Poor, “Fine Quantization in Signal Detection and Estimation,” [EEE Trans.

Information Theory, Vol. IT-34, pp. 960-972, Sep. 1988.

M. Longo, T. Lookabaugh, and R.M. Gray, “Quantization for Decentralized Hypothesis

Testing Under Communication Constraints,” [EEE Trans. Information Theory, Vol.

IT-36, No. 2, pp. 241-255, Mar. 1990.

18




